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Lessons from Ebola: Improving infectious disease
surveillance to inform outbreak management
Mark E. J. Woolhouse,1* Andrew Rambaut,1,2 Paul Kellam3,4

The current Ebola virus disease outbreak in West Africa has revealed serious shortcomings in national and
international capacity to detect, monitor, and respond to infectious disease outbreaks as they occur. Recent
advances in diagnostics, risk mapping, mathematical modeling, pathogen genome sequencing, phylogenetics,
and phylogeography have the potential to improve substantially the quantity and quality of information avail-
able to guide the public health response to outbreaks of all kinds.
INTRODUCTION

The Ebola virus disease (EVD) epidemic in West Africa exemplifies
how gaps in capacity for early detection of and rapid response to an
infectious disease outbreak can contribute to a public health crisis.
Overcoming these gaps is a global public good with benefits that ac-
crue beyond the boundaries of the country first affected (1). Surveillance—
defined in the 2005 International Health regulations (2) as “the systematic,
ongoing collection, collation and analysis of data for public health
purposes and the timely dissemination of public health information
for assessment and public health response as necessary”—is a critical
component of outbreak management. Technological advances in diag-
nostic tools, genome sequencing, computing power, and communica-
tions devices can augment traditional surveillance methods to acquire
and disseminate information in real time, offering the possibility of
better outbreak management and thereby saving lives. Lessons from
Ebola as well as other infectious diseases, such as influenza and Middle
East respiratory syndrome (MERS), may guide the integration of these
technologies for successful disease surveillance (Table 1).
DETECTION AND MONITORING

Most infectious disease outbreaks are first detected through clinical
investigation by vigilant frontline health care workers. However, clin-
ical surveillance can be an unreliable tool for outbreak detection and
monitoring for a number of reasons. Inadequate surveillance and/or re-
porting systems, a major issue for EVD in West Africa (3), may lead
to delayed detection and substantial underreporting. Misdiagnosis,
such as the misdiagnosis of sleeping sickness as malaria, may have fatal
consequences for the patients concerned (4). Also, mild or subclinical
cases may not be detected and/or reported to the health services. Such
cases accounted for the great majority of infections with pandemic H1N1
influenza in 2009. Indeed, an entirely clinically orientated view can
massively underestimate the burden of infection, leading to inaccurate
empirical estimates of the scale and trajectory of an outbreak and com-
promising outbreak management.

One solution to these problems is the development and deploy-
ment of rapid, point-of-care (POC) diagnostic tests, linked to modern
information technology (5). For acute infections, improving detection
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times by as little as 24 hours, or even less, can make a critical difference
to our ability to contain an outbreak (6). The focus of POC testing is to
generate rapid results that meet WHO “ASSURED” criteria (Affordable,
Sensitive, Specific, User-friendly, Rapid & Robust, Equipment-free, and
Delivered—to which we would add “Connected”). Suitable platforms
are already available for application to a range of viral, bacterial, and
protozoal infections. These include nucleic acid amplification techniques
that encompass thermal, polymerase chain reaction (PCR)–based tests,
isothermal methods (perhaps more suitable for field epidemiology), and
enzyme immunoassays and immunochromatographic tests (5). Although
rapid POC testing has yet to play a substantial role during any major in-
fectious disease epidemic, it is currently being evaluated for dengue and
influenza virus and is likely to be increasingly important in the future.

There are also technologies that are of limited use for clinical care
but of great value for epidemiological surveillance, providing estimates
of cumulative exposure at the population level. One such approach is
serosurveillance, the use of serological tests for screening an at-risk pop-
ulation. Serosurveillance has been used to estimate levels of exposure
to H5N1 influenza A (7) andMERS coronavirus (MERS-CoV) (8). Sero-
surveillance during the H1N1 influenza pandemic gave estimates of
30 to 40% population exposure in many countries (9), far higher than
clinical surveillance indicated. Protocols for the rapid development
and deployment of serological tests have been proposed for influenza
(10) and could, in principle, be designed for other infections.

Monitoring indirect markers of disease activity, such as Internet
use and activity on social media, may also contribute to epidemiolog-
ical surveillance. However, an early warning system to detect influenza
outbreaks (Google Flu Trends) did not detect the arrival of pandemic
H1N1 in the United States in 2009, and the challenge for Internet- and
social media–based surveillance systems is to develop methods good
enough to be used as surrogates for clinical data (11). However, other
new technologies, such as real-time sequencing and mathematical mod-
eling, may be ready for integrating into surveillance systems.
REAL-TIME SEQUENCE DATA

Probably the most important addition to the arsenal of tools for
outbreak investigation and guiding public health interventions is the
production and use of time-resolved and geolocated pathogen genome
data. Over the past decade, not only has a deep understanding and a
detailed evolutionary framework been developed for, in particular, virus
genetics (12), but powerful computational tools and high-throughput
methods for producing virus genomes are now available.
ranslationalMedicine.org 30 September 2015 Vol 7 Issue 307 307rv5 1



REV I EW
Large-scale sequencing has been extensively used as a research tool,
especially in the fields of HIV and influenza. HIV sequences for parts of
the virus genome conferring drug resistance have been routinely deter-
mined as part of clinical patient management for nearly two decades,
with peripheral blood samples being taken for virus genome load aswell
as for determiningHIV protease and reverse transcriptase sequences for
predictionof likely drug sensitivity or resistance (13).Whenorganized na-
tionally, such sequences can be linked under appropriate data governance
andethics to other clinical anddemographic data. Fromthis, the sequences
can inform transmission network analysis (14) and HIV infection dy-
namics (15). For influenza viruses, large-scale sequencing of virus isolates,
linked to geolocation, provides a rich and detailed insight into global
influenza virus transmission both in humans and in animal species (16).

HIV and influenza virus both illustrate that access to and analysis
of large numbers of samples (typically hundreds or thousands) is es-
sential. These samples need to be collected without additional sampling
of the patient or specialist processing of samples where they are obtained.
Fortunately, clinical samples are processed into virus nucleic acid either
manually or on robot systems with as little as 20% of the virus nucleic
acid used in the diagnostic PCR. It is at this point, when all the costs
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and logistics associated with diagnosis have been met, that virus ge-
nomes can be retrieved from the sample. In short, residual clinical
diagnostic nucleic acid should never be discarded before the option
of converting to a pathogen genome has been considered.

In practice, full-length virus genomes are not always required. Partial
virus genomes that are not “finished” may provide all the information
required formolecular epidemiology. A range of genome criteria should
be considered in producing high-value or actionable virus genomes
(17). The important addition here is a set of criteria for assessing the
quality of the assembled genomes and the desire to limit these criteria to
the majority/consensus pathogen genome, rather than the requiring accu-
rate reporting of minority sequence variants in the sample. This strategy
has been shown towork in practice for bothMERS-CoV and ebolavirus.
ANALYSIS OF SEQUENCE DATA

In recent years, there has been a profusion of methods that link virus
gene sequences with other information to reveal the evolutionary and
epidemiological dynamics of the virus. One critical set of data is the
Table 1. Major emerging infectious disease outbreaks in the 21st century.
Pathogen
 Disease
 Time span
 Geographic range
ranslationalMedicine.org 30 September 2015
Scale
SARS coronavirus
 Severe acute
respiratory syndrome
November 2002
to July 2003
29 countries: Australia, Brazil,
Canada, China, Colombia, Finland,
France, Germany, India, Indonesia,
Italy, Kuwait, Malaysia, Mongolia,
New Zealand, Philippines, Ireland,
Romania, Russia, Singapore, South Africa,
South Korea, Spain, Sweden, Switzerland,
Thailand, UK, United States, Viet Nam
>8000 cases, 916 deaths
Chikungunya virus
 Mosquito-borne
viral disease
February 2005 to
August 2006
8 countries: Comoros Islands,
India, Kenya, Madagascar, Mauritius,
Mayotte, Reunion, Seychelles
>1,700,000 cases
H1N1 influenza A virus*
 Influenza
 April 2009 to
August 2010
214 countries worldwide reported
laboratory-confirmed cases
Estimated 150,000 to
600,000 deaths,
18,500 laboratory-confirmed
E. coli O104:H4
 Enterobacterial infection
(can lead to hemolytic
uremic syndrome)
May 2011 to
July 2011
14 countries: Austria, Canada,
Czech Republic, Denmark, France,
Germany, Greece, Luxembourg,
Netherlands, Norway, Poland,
Spain, Sweden, Switzerland
4075 cases, 50 deaths
MERS coronavirus*
 Viral respiratory
illness
September 2012 to
present
23 countries: Algeria, Austria,
Egypt, France, Germany, Greece,
Iran, Italy, Jordan, Kuwait, Lebanon,
Malaysia, Netherlands, Oman,
Philippines, Qatar, Saudi Arabia,
Turkey, Tunisia, UK, United Arab Emirates,
United States, Yemen
1368 laboratory-
confirmed cases,
487 deaths
(as of 7 July 2015)
H7N9 influenza A virus
 Influenza
 March 2013 to
present
3 countries: China, plus travel-associated
cases in Malaysia, Canada
486 laboratory-
confirmed cases, 184 deaths
(as of 8 February 2015)
Chikungunya virus
 Mosquito-borne
viral disease
December 2013 to
present
47 countries: Widespread in Caribbean and
Central America plus Argentina, Bolivia, Brazil,
Canada, Chile, Colombia, Guyana, Mexico,
Paraguay, Peru, United States, Venezuela
>1,000,000 cases, 176 deaths
(as of January 2015)
Zaire ebolavirus*
 Hemorrhagic fever
 March 2014 to
present
9 countries: Guinea, Liberia, Mali, Nigeria, Senegal,
Sierra Leone, Spain, UK, United States
28,251 cases, 11,294 deaths
(as of 16 September 2015)
*Designated as “public health event of international concern” (PHEIC) according to the International Health Regulations.
Vol 7 Issue 307 307rv5 2



REV I EW
dates of sampling of the virus, which transform a phylogeny from a
classification procedure into an epidemiological tool. With a time axis,
the branching events represent transmissions between hosts and thus
the times between these events can be used, in a mathematical model,
to learn about the key parameters for the outbreak.

For many infectious disease outbreaks, estimates of the sampling
proportion (the proportion of the epidemic the sample viruses represent)
may be the most crucial inferences to be made, revealing the extent of
the hidden epidemic due to subclinical cases or otherwise unreported
cases. Another key motivation for the collection of virus sequence data
is to understand the relationship between human cases and an animal
reservoir. An important example is MERS-CoV (18), where phylogenetic
analysis of virus sequences obtained from camels, particularly camels
with no link to a human case, suggests the directionality of transmission
from camel to human (19). Virus sequence analysis can also model how
the virus spreads through space and time, using individual locations of
sampled individuals, at the level of map coordinates and assuming that
the movement of the virus is through a process of diffusion (20) or by
treating geography as a limited set of discrete locations (for example,
cities) and interpreting movements as jumps between them that occur
at particular rates (21). These approaches can be equally used to inves-
tigate the evolution of phenotypic traits of viruses, such as host switching
(19) or virulence, resistance, or the antigenic evolution of influenza (22).

The 2009 H1N1 influenza A pandemic was remarkable for being
the first serious outbreak to be tracked in real time by virus genetic
data, using the data provided by the U.S. Centers for Disease Control
and Prevention (CDC) within days of samples being taken from sus-
pected cases. These data were shared as part of the Global Initiative on
SharingAll InfluenzaData (GISAID), which had been set up a few years

before to encourage the exchangeof influen-
za data. However, no similar initiatives exist
for other viruses with epidemic potential.

Virus genome sequencing of the ear-
liest EVD cases from Guinea attributed
the outbreak in West Africa to the species
ebolavirus within weeks of the first cases
being diagnosed (23). The genetic simi-
larity to viruses that had previously caused
human outbreaks in Central Africa provided
an expectation of the epidemiological and
pathological properties of the virus: The
Zaire species of ebolavirus had caused 14
documented outbreaks of no more than a
few hundred cases but with a case fatality
rate of up to 90%. However, even though
this was a known virus, the outbreak oc-
curred in an unexpected geographical area
and in a population that had a very different
demography from previous outbreaks (24).

In June 2014, the Broad Institute in col-
laboration with partners at the Kenema
Government Hospital in Sierra Leone shared
78 virus genome sequences from patients
that had presented with EVD in the pre-
ceding weeks. These provided informa-
tion on the rate of evolution and revealed
no evidence of virus adaptation to humans
(25), a major concern at the time. Another
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important finding was that the epidemic was not being driven by
multiple zoonotic transfers from an animal reservoir. These sequences
provided crucial insights into the virus just at a time when the outbreak
was rapidly growing (Fig. 1). The publication of these sequences (25)
inspired a series of analytical papers extracting additional inferences
about the outbreak including estimates of epidemiological parameters
such as the case reproduction rate, infectious period and sampling frac-
tion (26), and the identification of lineages of potential epidemiological
significance (27). Estimates of the case reproduction rate (similar to R0
during the early phase of an outbreak) were broadly in line with epi-
demiological estimates, providing helpful confirmatory evidence that
overcame concerns over the reliability of case reporting data. However,
the epidemic had grown to the point where hundreds of cases per week
were being reported from the three affected countries by the time these
studies were published (in October and November 2014), and the re-
sults had limited practical value.
MATHEMATICAL MODELING

Mathematical modeling is an established tool in infectious disease ep-
idemiology (28). Real-time projections of case numbers using mathe-
matical models have been provided during many epidemics in the past
three decades, including EVD (29, 30). At a minimum, actionable pro-
jections require (i) an appropriate model framework that captures het-
erogeneities in risks of infection and rates of transmission, (ii) appropriate
methods for model parameterization, and (iii) rapid access to infection
and disease data. Recent applications of mathematical and statistical
models to project the course of the 2014 EVD epidemic provide in-
Fig. 1. Time-scaled phylogenetic tree based on ebolavirus sequences [from (25)] from Kenema Gov-
ernment Hospital, Sierra Leone, May and June 2014, plus early samples from Guinea [from (23)]. Branch

colors represent probable location of infection with the corresponding locations shown in the inset map.
In the map, the radius of the circles denotes the number of sampled sequences, and the lines represent
the phylogenetic tree projected onto the map.
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structive examples. Two studies (29, 30) were based on the standard
compartment model framework (28), extended to allow for heteroge-
neous transmission related to clinical disease, hospitalization, and
funerals, and calibrated against early case data. Another study (31) fitted
both regression and branching process models to clinical case data. A
variant of the latter approach incorporated separate probability distri-
butions for different transmission routes, resulting in a multitype branch-
ing process model (Fig. 2) (32). Together, these make for a set of very
different modeling approaches, but all are essentially extrapolations,
implicitly assuming near-exponential growth of the epidemic.

Accurate projections depend to a large degree on accurate param-
eter estimation, not least because exponential processes are highly sen-
sitive to exact parameter values. Two key parameters are R0 (the average
number of secondary cases generated by a single primary case intro-
duced into a previously unexposed population) and the generation time
(the average time between initial infection of a case and of cases it gives
rise to) (28). Together, R0 and the generation time determine the
doubling time of an outbreak during the early, exponential phase. How-
ever, exponential growth during the early stages of an outbreak is not
expected in all circumstances (33), such as when R0 ≈ 1, a realistic
scenario for which large outbreaks (hundreds of cases or more) are
entirely possible (34) or when there are multiple introductions sepa-
rated in time and space, some of which die out due simply to demo-
graphic stochasticity. This was the case with pandemic H1N1 influenza
A in Scotland in 2009, as indicated by the analysis of virus sequence
data (35). The history of ebolavirus in Liberia in 2014 may also have
involved multiple introductions (32), but again, this can only be con-
firmed from virus genome sequence data.

Although short-term projections are feasible for many outbreaks,
extrapolation methods are much less useful in the longer term. This is
partly because the confidence intervals on the projections quickly be-
come very wide (Fig. 2), but more fundamentally, because the expo-
nential growth assumption breaks down as the epidemic progresses (often
with the introduction of control measures). This underlines the need
for clear communication of how model outputs—particularly “worst
case” scenarios—should be interpreted (3).

Several initiatives [for example, (36)] aim to increase the availabil-
ity of open access tools kits for epidemiological modeling—both for
model parameterization and development. Indeed, formal, robust,
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and rapid model fitting procedures, generally based on maximum like-
lihood or Markov chain Monte Carlo (McMC) methods (37), are being
developed to replace the ad hoc approaches—“calibration” or “tuning”—
which are still often used in practice (33).

One potentially useful approach is pattern-oriented modeling
(POM) (38). POM is a technique used originally in ecological model-
ing both to distinguish between possible model structures and to reduce
parameter uncertainty. POM identifies models that reproduce a set of
preselected patterns observed in the data—whether qualitative or quan-
titative. The ability to consider multiple patterns and different kinds of
data simultaneously greatly increases both discriminatory power and
flexibility. It also addresses a legitimate reluctance to apply very precise
model fitting procedures to poor-quality disease data. POM has rarely
been applied to infectious diseases (38), but a very similar approach has
been used to parameterize a model of EVD cases, generating encourag-
ingly precise estimates of a set of seven different parameters (32).
RISK MAPPING

Risk mapping has been applied to a range of diseases, including EVD
in Africa. The EVD risk map (24) incorporated a set of predictors in-
cluding elevation, an index of vegetation cover, other environmental
variables, and estimated composite distribution data for three bat spe-
cies suspected to be reservoirs of Ebola virus. The output (Fig. 3) sug-
gests that several countries, notably Nigeria and Cameroon, are at risk
of EVD but lie outside its currently reported range.

Spatial risk analyses are restricted to predictors for which spatial data
are available. In resource-poor settings, this often equates to data avail-
able via remote sensing. Analyses are also limited by the quantity and
quality of the disease data used to calibrate the models, in particular the
issue of ascertainment bias (for example, “pseudo-absence” at locations
Day
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Fig. 2. Projected numbers of cases of EVD in Liberia in 2014 obtained
using a branching process model with an ensemble of plausible param-

eter values. The 95% prediction intervals from 4 July 2014 (yellow shading)
are compared with the observed cumulative case numbers (logarithmic
scale) over the following 2 months (blue line). The 95% prediction intervals
for a model that incorporates estimated levels of underreporting are also
shown (blue shading). Reproduced with authors’ permission from (32).
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Fig. 3. Predicted probability distribution of zoonotic EVD cases in Africa
based on a risk mapping analysis and highlighting at-risk countries with

and without index cases reported up to 2014. Blue, low probability; red,
high probability. Reproduced with authors’ permission from (24).
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where health reporting is unreliable). The utility of the models is largely
determined by how well they deal with this issue. However, even with
these limitations, risk maps provide information that helps direct na-
tional and international surveillance efforts and contributes to planning
and preparedness between outbreaks.
APPLICATIONS OF MODELING

Outbreak size distribution analysis has been successfully used to mon-
itor the epidemiology of measles in the UK after a fall-off in childhood
vaccination rates in the late 1990s, charting the approaching loss of
herd immunity through shifts in the size and frequency of small out-
breaks (39). It has also been applied to monkeypox (40), anticipating a
possible increase in monkeypox transmissibility as the fraction of the
population immunized against smallpox dwindles. It has recently been
applied, using McMC techniques, to EVD (34), confirming that before
2013, R0 for ebolavirus in humans was close to, or possibly above, 1,
indicative of a high risk of major epidemics.

Modeling can aid in predicting the impact of so-called reactive
control measures (6) on the course of an infectious disease outbreak.
For example, the expected impact of case isolation and/or quarantine
of at-risk individuals on the course of an outbreak is determined, inter
alia, by the relative timings of a case becoming infectious (and thus
potentially transmitting infection to others) and being detected, typi-
cally after the appearance of clinical signs (6). Surprisingly, such basic
information on the time course of an infection is often lacking, even
for well-studied infections such as influenza, and there is a need for greater
investment in experimental studies to fill this gap. This example illus-
trates a wider concern: Many public health interventions are designed
to reduce pathogen transmission rates, and neither their intended nor
actual impact can be quantified without reference to changes in transmis-
sion rates; however, research on pathogen transmission consumes a
miniscule fraction of research effort expended on infectious diseases,
the bulk of which is aimed at understanding and preventing infection
and pathology.

Another consideration, all too often ignored until an outbreak oc-
curs, is the logistic capacity of the affected health system to respond.
For the West African EVD epidemic, a key issue was the capacity to roll
out isolation units fast enough to “catch up” the epidemic curve (3).
However, similar arguments apply more generally to the capacity to ad-
minister drugs, vaccines, or any other reactive measures that contribute
to reducing the net rate of transmission. In this context, models can
help quantify an “effective” response. For EVD, models indicated that
hospital capacity and individual behavior (particularly social distancing)
were particularly important (32).

Parameterizing the variables that capture both the intended and
the actual impact of interventions can be extremely difficult (33). There
is a need, first, to monitor the implementation of interventions (noting
that targets set by policy-makers do not always correspond to events
on the ground) and, second, to analyze these data in real time to evaluate
their impact. These activities require resources and are often neglected.
Moreover, many of the measures that may be taken have effects, par-
ticularly on the rate of transmission, that are difficult to quantify. Ex-
amples include the wearing of face masks and social distancing (reducing
the risk of infection by changing patterns of contact with the rest of the
population, whether in response to public health warnings or through
individual initiative).
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An important general principle that emerges from the infectious
disease modeling literature is that there are substantial benefits arising
from the implementation of reactive control measures as early as pos-
sible (6). This is a straightforward consequence of the expectation that
the absolute numbers of cases will increase exponentially during the
early stages of an outbreak. Indeed, during this phase, the costs of
delay also increase over time; for an acute infection such as ebolavirus,
each week’s delay permits a greater number of extra cases than the
previous week (3).
PRACTICAL STEPS

The call for better surveillance systems has been made repeatedly in
the past decade (41), but there has been too little effective change on
the ground (42). One of the most important barriers to the modern-
ization of infectious disease surveillance systems is that nontraditional
approaches are all too often seen as an unnecessary distraction from
immediate health needs, particularly during an emergency when re-
sources are likely to be severely stretched. This can be exacerbated by
real or perceived gaps in technical capacity and expertise (a health
emergency is not the best time to be learning new techniques) and by
those involved in collecting samples and data (sometimes in extremely
challenging circumstances) being disconnected from the subsequent
work that depends on their efforts. The best way to remove such bar-
riers to adoption may be to promote a wider appreciation of what is
possible, how it can be achieved, and the immediate benefit to public
health.

It has been argued that improving global surveillance for emerging
infectious diseases is feasible and cost-effective (2), but substantial in-
vestment in infrastructure, technology, training, and organization is
required. Ultimately, improved global surveillance will emerge from
strengthening and connecting national surveillance systems. Similar
kinds of investment are needed to strengthen national and interna-
tional capacity to respond effectively to infectious disease events, and
there is an ongoing discussion in the light of the current EVD epidem-
ic as to whether that should include an international rapid response
force (1). In addition, there is a need for a greater investment in health
policy and systems research, an underfunded and unappreciated field
that has a central role to play in meeting the challenge of achieving
effective infectious disease surveillance and outbreak management on
a global scale.

Any response to an infectious disease outbreak, and especially a
coordinated international effort, is contingent not just on the presence
of functional national surveillance systems but also on the rapid
sharing of information between countries and with international agen-
cies. The revolution in information and communications technology
that has occurred over the past 20 to 30 years has removed virtually all
technological barriers to this process, even in remote, resource-poor set-
tings. Moreover, as several of the above examples illustrate, it is now
routine to integrate and analyze data from multiple sources, such as
public health, demographic, location (for example, with global posi-
tioning system), movement, geographic, animal distribution, remote
sensing, and genome sequence data.

Arguably the biggest remaining barrier to real-time data sharing is
cultural, reflecting a reluctance to report disease events. This can be for
a number of reasons, not least fear of the imposition of restrictions on
freedom of movement or trade or of adverse effects on tourism and
ranslationalMedicine.org 30 September 2015 Vol 7 Issue 307 307rv5 5
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investment (2). The 2005 International Health Regulations provide a
framework for disease reporting but do not directly address the ques-
tion of disincentives, and their implementation has been very patchy
to date (42). An obvious solution is to balance the negative conse-
quences of reporting with the promise of effective assistance.

For maximum benefit, data sharing should be as rapid and as open
as possible. Again, there are few, if any, technological barriers to this:
Data and information sharing platforms such as GenBank, Dryad, and
ArXiv have been available for many years. However, although lines of
reporting from front-line health officials to international agencies are
fairly well set out (2), there is no agreement on responsibility for data
sharing, and all too often, this is left to individual or institutional pref-
erence. One approach is to penalize countries that do not implement and
report from an adequate surveillance system, as was required for par-
ticipation in the international cattle trade during the bovine spongiform
encephalopathy (BSE) epidemic.

One possible consequence of data sharing is a proliferation of
analyses of those data, as was seen during the 2009 H1N1 influenza A
pandemic and during the current EVD epidemic. Although we regard
this as a positive development, it can have perceived disadvantages,
notably a loss of control by national or international agencies, and as
creating uncertainty over which analyses should be trusted. These is-
sues are not insurmountable and should not be regarded as obstacles
to data sharing. In other fields, notably climate change, an ensemble
approach to data analysis, interpretation, and projection has been the
norm for many years (43). Although this is challenging for many in-
fectious diseases, if only because of the much shorter time scales in-
volved, suitable systems are already in place and there has been, for
example, real-time evaluation of multiple models of pandemic influ-

enza (44).

Many of the practical aspects of pre-
paredness for an infectious disease outbreak
can and should be addressed in advance
of a crisis. These include contingency plan-
ning and coordination; developing and
stockpiling diagnostics, drugs, and vac-
cines; setting up sequencing pipelines;
designing data sharing protocols; construct-
ing, verifying, and validating mathematical
models; agreeing reporting and communi-
cation pathways; and anticipating public
engagement and ethical issues. One ap-
proach to this is to set up sentinel cohorts.
This ensures that data collection and re-
porting (including self-reporting) systems
are all in place and tested in advance of
an outbreak. It would also cover ethical re-
quirements. Ethical considerations both
delayed and limited surveillance in the UK
during the 2009 H1N1 influenza A pan-
demic (45) and can be difficult to deal with
rapidly even during a major emergency, as
recent experience with trials for ebolavirus
vaccines illustrates. The surveillance sys-
tems that are set up also need to be flex-
ible and responsive. The infectious disease
threat is diverse and dynamic, and period-
ically presents “out of the blue” challenges
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such as BSE/vCJD (variant Creutzfeldt-Jakob disease) in the 1980s or
SARS in the 2000s.

To facilitate the provision of virus genomes, we would propose an
approach similar to the WHO’s “Pandemic Influenza Preparedness
Framework for the sharing of influenza viruses and access to vaccines
and other benefits” (or PIP Framework), an international arrangement
that brings together key stakeholders to strengthen preparedness for
the next influenza pandemic. This has now been extended to address
sequencing data through a Technical Expert Working Group, with the
overall PIP framework encouraging collaborative, transnational work-
ing under a framework of a more structured, efficient, and equitable
system.

We also need to recognize that managing infectious disease of all
kinds is a multidisciplinary problem and, if it is to be done as effective-
ly as possible, requires input from beyond traditional clinical medicine
and public health. An integrated, global infectious disease surveillance
system needs to take a One Health approach and embrace livestock
and wildlife health, as well as geography and environmental sciences,
sociology, economics and anthropology, informatics, communications
science, and health technology.
CONCLUSIONS

We can readily identify the components of a surveillance system that
would enable the collection of infectious disease surveillance data from
multiple sources for use as inputs into state-of-the-art epidemiological
analysis (Fig. 4). Advances in diagnostics, sequencing platforms, com-
munications technology, and computing and informatics over the past
At-risk populationCases
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Case finding

Analysis and 
modeling

Public health measures

Decision-making

Diagnostics, serology, 
and sequencing

Population monitoring
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and behavioral 
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Case finding

Reporting

Data collation 
and sharing

Monitoring 
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Planning and 
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Communication of outputs
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Fig. 4. Key elements of data capture and information flows for real-time quantitative analysis to in-
form outbreak management. The at-risk population encompasses cases and, where available, a sentinel

subpopulation. Three types of data capture activities are identified: case finding, including associated ep-
idemiological investigations such as contact tracing; diagnostic information on individual patients, includ-
ing serological testing and pathogen sequencing; and so-called denominator studies on the population at
risk, including demography, behavior (such as social media activity), and the impact of health measures.
Information flows involve communication between data gatherers, data analysts and modelers, policy-
makers, and public health authorities. We note, however, that decision-making never relies solely on
the outputs of real-time epidemiological analyses.
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5 to 10 years mean that such analyses can now make an effective con-
tribution to outbreak management in real time. This is a highly signif-
icant new capability that we should fully exploit to improve the public
health response to future infectious disease outbreaks. A cultural shift
is required among health care workers such that these activities come
to be regarded as a valuable complement to the clinical care of indi-
vidual patients, and not as unwelcome competition for resources, time,
and effort.

Strengthening surveillance and response capacity around the world
would require investment estimated at tens of billions of dollars per
annum, but is likely to be cost-effective. Moreover, capacity strengthen-
ing should not be the sole responsibility of individual countries; we
emphasize that infectious disease surveillance is a global good and
should be financed on that basis. We suggest that not all elements of
a state-of-the-art surveillance system need to be replicated at a national
level; it will often be much more efficient to integrate local activities
into an international network. However, this would require consider-
ably more proactive leadership of global surveillance efforts than exists
at present. Ultimately, there will be little progress without strong and
trusted international governance systems.
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